首页 > 教学教案 > 教学设计 > 有理数课件(最新4篇)正文

《有理数课件(最新4篇)》

时间:

以下是漂亮的小编帮大家分享的有理数课件(最新4篇),欢迎参考,希望对大家有所帮助。

初一上册数学《 有理数》课件 篇1

初一上册数学《 有理数》课件

教学目标:

1、明白生活中存在着无数表示相反意义的量,能举例说明;

2、能体会引进负数的必要性和意义,建立正数和负数的数感。

重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

难点:对负数的意义的理解。

教学过程:

一、知识导向:

本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

二、新课拆析:

1、回顾小学中有关数的范围及数的。分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。

如:0,1,2,3,…, ,

2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

如:汽车向东行驶 3千米和向西行驶2千米;

温度是零上10°C和零下5°C;

收入500元和支出237元;

水位升高1.2米和下降0.7米;

3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C

概括:我们把这一种新数,叫做负数, 如:-3,-45,…

过去学过的那些数(零除外)叫做正数,如:1,2.2…

零既不是正数,也不是负数

例:下面各数中,哪些数是正数,哪些数是负数,

1,2.3,-5.5,68,-,0,-11,+123,…

三、阶梯训练:

P18 练习:1,2,3,4。

四、知识小结:

从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

五、作业巩固:

1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;

2、分别举出几个正数与负数(最少6个)。

3、P20习题2.1:1题。

《有理数》教案设计 篇2

一、创设情境引入

教师:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。

于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).

这里用到正数和负数的加法,这样的加法怎样进行运算呢?下面就让我们一起来探讨1.3.1有理数的加法(一)。

学生:领会新课意图,积极投入到学习中。

二﹑探求新知

教师: 下面借助数轴来讨论有理数的加法。

1、看下面的问题:

一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作− 5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?

学生: 两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8

教师: 如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?

学生1:8 m

学生2:不明白。

教师:对于这个问题,可以用数轴来分析,我们把数轴的原点作为第一次运动的起点,第二次运动的起点是第一次运动的终点,有第二次运动的终点与原点的相对位置得出两次运动的结果。

学生3: 两次运动后物体从起点向左运动了 8m.

教师:怎样用算式表示?

学生: (−5)+(−3) = −8

教师:如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?

学生:两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3) = 2

2、探究:

利用数轴,求以下情况时物体两次运动的结果;

(1)先向右运动3 m,再向左运动5 m,物体从起点向____运动了_____m .

(2)先向右运动5 m,再向左运动5 m,物体从起点向____运动了_____m .

(3)先向左运动5 m,再向右运动5 m,物体从起点向____运动了_____m .

教师:同学们,请你们自己利用数轴进行分析,完成填空。

学生:边看课本边完成填空。

教师:教师巡视,帮助有困难的学生,了解各小组自主学习的进展情况。

3、小组讨论交流:

教师:巡视了解各小组的完成情况,及时收集信息。

学生:完成后各小组成员互相交流。

教师:请各组选派代表发言。

学生1:(第一组)依次填:(1)左;-2;(2)没走;0;(3)没走;0。

学生2:(第二组)(1)左;-2;(2)左或右;0;(3)左或右;0。

教师:以上两种答案,哪种比较确切?

学生:(大部分)第二种。

教师:能说说理由吗?

学生:因为向右运动5 m记作5 m,向左运动5 m记作-5 m,两次运动的结果是5+(-5)=0。

教师:说得真好!那第一题和第三题用算式怎样表示?

学生:3+(-5)=-2;-5+5=0。

教师:我们再看下面的问题:

如果物体第一秒向右(或左)运动5 m,第二秒原地不动,两秒后物体从起点向右或向左运动了多少m?

学生:5 m.

教师:怎样列算式?

学生:5+0=5。

学生:或(-5)+0=-5。

教师:两位同学回答正确吗?

学生:(全体)正确。

教师;回答非常好。

现在我们来观察上面得出的7个式子,你能发现什么规律?

① 5+3 = 8;②(−5)+(−3) = −8;③5+(−3) = 2;④3+(-5)=-2;

⑤5+(-5)=0;⑥-5+5=0;⑦5+0=5或(-5)+0=-5。

教师:同学们在观察时,注意考虑它的符号, 同桌之间互相讨论。

教师:下面请同学说说自己的发现。

在学生回答的基础上,教师适当补充得出有理数的加法法则:

①同号的两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零。

③一个数同0相加,仍得这个数。

七年级数学有理数的除法课件 篇3

七年级数学有理数的除法课件

一、目的要求

1.使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。

2.使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。

二、内容分析

有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。因而教材首先根据除法的意义计算一个具体的有理数除法的实例,得出有理数除法可以利用乘法来进行的结论,进而指出有理数范围内倒数的定义不变,这样,就得出了有理数除法法则。接下来,通过几个实例说明有理数除法法则,并根据除法与乘法的关系,进一步得到了与乘法类似的法则。最后,通过几个例题的教学,既说明了有理数除法的另一种形式,也指出了除法与分数互化的关系,同时,还指出有理数的除法化成有理数的乘法以后,可以利用有理数乘法的运算性质简化运算,这样,就说明了有理数乘除的混合运算法则。

本节课的重点是除法法则和倒数概念;难点是对零不能作除数与零没有倒数的理解以及乘法与除法的互化,关键是,实际运算时,先确定商的符号,然后再根据不同情况采取适当的方法求商的绝对值,因而教学时,要让学生通过实例理解有理数除法与小学除法法则基本相同,只是增加了符号的'变化。

三、教学过程

复习提问:

1.小学学过的倒数意义是什么?4和的倒数分别是什么?0为什么没有倒数。

答:乘积是1的两个数互为倒数,4的倒数是,的倒数是,0没有倒数是因为没有一个数与0相乘等于1等于。

2.小学学过的除法的意义是什么?10÷5是什么意思?商是几?0÷5呢?

答:除法是已知两个因数的积与其中一个因数,求另一个因数的运算,15÷5表示一个数与5的积是15,商是3,0÷5表示一个数与5的积是0,商是0。

3.小学学过的除法和乘法的关系是什么?

答:除以一个数等于乘上这个数的倒数。

4.5÷0=?0÷0=?

答:0不能作除数,这两个除式没有意义。

新课讲解:

与小学学过的一样,除法是乘法的逆运算,这里与小学不同的是,被除数和除数可以是任意有理数(零作除数除外)。

引例:计算:8×(-)和8÷(-4)

8×(-)=-2,

8÷(-4),由除法的意义,就是要求一个数,使它与-4相乘,积为8,

∵(-4)×(-2)=8,

∴8÷(-4)=-2。

从而,8÷(-4)=8×(-),

同样,有(-8)÷4=(-8)×,

(-8)÷(-4)=(-8)×(-),

这说明,有理数除法可以利用乘法来进行。

又(-4)×=-1,4×=1,

由4和互为倒数,说明(-4)和(-)也互为倒数。

从而对于有理数仍然有:乘积为1的两个数互为倒数。

提问:-2,-,-1的倒数各是什么?为什么?

注意:求一个整数的倒数,直接写成这个数的数分之一即可,求一个分数的倒数,只要把分子分母颠倒一下即可,一般地,a(a≠0)的倒数是,0没有倒数。

由上面的引例和倒数的意义,可得到与小学一样的有理数除法法则,则教科书第101页方框里的黑体字,用式子表示,就是a÷b=a·(b≠0)。

注意:有理数除法法则也表示了有理数除法和有理数乘法可以互相转化的关系,与小学一样,也规定:0不能作除数。

例1计算。(见教科书第103页例1)

解答过程见教科书第103页例1。

阅读教科书第102页至第103页。

课堂练习:教科书第104页练习第l,2,3题。

提问:l.正数的倒数是正数,负数的倒数是负数,零的倒数是零,这句话正确吗?

(答:略)

2.两数相除,商的符号如何确定?为什么?商的绝对值呢?

答:商的符号由两个数的符号确定,因为除以一个数等于乘以这个数的倒数,当两个不等于零的数互为倒数时,它们的符号相同。故两数相除,仍是同号得正,异号得负,商的绝对值则可由两数的绝对值相除而得到。

从上所述,可得到有理数除法与乘法类似的法则,见教科书第102页上的黑体字。

在进行有理数除法运算时,既可以利用乘法(把除数化为它的倒数),也可以直接(特别是在能整除时)进行,具体利用哪种方式,根据情况灵活选用。

例2见教科书第104页例2。

解答过程见教科书第104页例2。

注意:除法可以表示成分数和比的形式。如84÷(-7)可以写成或84:(-7);反过来,分数和比也可以化为除法,如可以写成(-12)÷3,15:6可以写成15÷6。这说明,除法、分数和比相互可以互相转化,并且通过这种转化,常常可以简化计算。

例3见教科书第105页例3。

分析:(l)有两种算法,一是将写成,然后用除法法则或利用乘法进行计算;二是将写成24+,然后利用分配律进行计算。

对于(2),是乘除混合运算,可以接从左到右的顺序依次计算,也可以把除法化为乘法,按乘法法则运算。

解答过程见教科书第105页例3。

讲解教科书例3后的两个注意点。

课堂练习:见教科书第105页练习。

第1题可直接约分,也可化为除法。

第2题可先化成乘法,并利用乘法的运算律简化运算。

课堂小结:

阅读教科书第102页至第105页上的内容,理解倒数的意义,除法法则的两种形式及教材上的注意点。

提问:(l)倒数的意义是什么?有理数除法法则是什么?如何进行有理数的除法运算?(两种形式)如何进行有理数乘除混合运算?

(2)0能作除数吗?什么数的倒数是它本身?的倒数是什么?(a≠0)

四、课外作业

习题2.9A组第1,2,3,4,5题的双数小题,第6题。

选作题:习题2.9B组第1,2,3题双数小题。

有理数测试题 篇4

《有理数》教案设计

1.2 有理数

1.掌握有理数的概念;

2.会对有理数按一定的标准进行分类;

3.体检分类。

【对话探索设计】

〖复习

我们知道,所有的分数都可以写成两个整数的比。有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗? 可以写成两个整数的比吗? 是不是分数?

结论:所有的有限小数和无限循环小数都是分数。

〖探索1

小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的'整数有什么不同?

结论:正整数p零p负整数统称整数。

〖探索2

下列负数哪些是负分数?

-12, ,-0.33, ,-12.03, .

〖探索3

所有正整数组成正整数集合, 所有负整数组成负整数集合。请把下列各数填入它所属于的集合的大括号里:

1, 0.0708, -700, -, -3.88, 0, , 3.14159265, , .

正整数集合:{ } 负整数集合:{ }

整数集合:{ }

正分数集合:{ } 负分数集合:{ }

(注意:大括号内的省略号表示什么?)

〖探索4

为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?

结论: (1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;

(2)分数一定是小数,小数不一定是分数。

〖探索5

整数和分数统称有理数。

在数-100, 70.8, -7, , -3.8, 0, , , 中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.

(友情提示:, 都是小数,但都不是分数,自然也都不是有理数。你答对了吗?)

〖练习

P10.练习

【作业】

P18.习题1.

【补充作业】

1.列出竖式,把分数 化为小数。(体会分数不可能是无限不循环小数。)

2.把下列小数化为分数:3.14159, .

【备选素材】

1.判断:

(1)一个有理数,不是正数,就是负数;

(2)一个有理数,不是整数,就是分数;

(3)一个有理数,是分数,就一定是小数;

(4)一个无限小数,如果不循环,就不是有理数;

(5)小数就是分数;

(6)有理数只能分成两类。

(7)负分数不是负数。

2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类。

3.分数可以分为有限小数和________________两类。

4.满足什么条件的小数才是有理数?

5.(1)列出竖式,把分数 化为小数;(体会分数不可能是无限不循环小数。)

(2)有的小数不是分数,你能举出一个例子吗?

(3)说明为什么0.3是分数,而 却不是。

6.有理数可以分为整数和分数两类,还可以按符号分为正有理数p____和___________三类。

7.把下列各数填在相应的集合里:

-|-3|, -(-0.072), , -3.88, , 3.14, , .