首页 > 教学教案 > 小学教案 > 三年级教案 > 三年级数学教案:《数学广角--排列组合》教案【优秀21篇】正文

《三年级数学教案:《数学广角--排列组合》教案【优秀21篇】》

时间:

作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。我们该怎么去写教案呢?

排列组合教案 1

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

教学建议

一、知识结构

二、重点难点分析

本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。

从n个不同元素中任取(≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取(≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。

公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好 的推导。

排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。

在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。

在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。

三、教法建议

①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

ab,ac,ba,bc,ca,cb,

其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数。

②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。

从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。

在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。

在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列。

要特别注意,不加特殊说明,本章不研究重复排列问题。

③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导 ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。

导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。

公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式。对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释。

④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。

⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。

教学设计示例

排列

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

教学重点难点

重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。

难点是解有关排列的应用题。

教学过程设计

一、 复习引入

上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):

1、书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书。

(1)从中任取1本,有多少种取法?

(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?

2、某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?

找一同学谈解答并说明怎样思考的的过程

第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法。根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=20xx.

第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区。

二、 讲授新课

学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点。先从实例入手:

1、北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?

由学生设计好方案并回答。

(1)用加法原理设计方案。

首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票。

(2)用乘法原理设计方案。

首先确定起点站,在三个站中,任选一个站为起点站,有3种方法。即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选。那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种。

根据以上分析由学生(板演)写出所有种飞机票

再看一个实例。

在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号。如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?

找学生谈自己对这个问题的想法。

事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数。

首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;

其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法。剩下那面旗子,放在最低位置。

根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种)。

根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况。(包括每个位置情况)

第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来。

由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数。

根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个)。

请板演的学生谈谈怎样想的?

第一步,先确定百位上的数字。在1,2,3,4这四个数字中任取一个,有4种取法。

第二步,确定十位上的数字。当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法。

第三步,确定个位上的数字。当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法。

根据乘法原理,所以共有4×3×2=24种。

下面由教师提问,学生回答下列问题

(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?

都是从一些研究的对象之中取出某些研究的对象。

(2)取出的这些研究对象又做些什么?

实质上按着顺序排成一排,交换不同的位置就是不同的情况。

(3)请大家看书,第×页、第×行。 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素。

上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法。

第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法。

第三个问题呢?

从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法。

给出排列定义

请看课本,第×页,第×行。一般地说,从n个不同的元素中,任取(≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出个元素的一个排列。

下面由教师提问,学生回答下列问题

(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?

从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同。两个条件中,只要有一个条件不符合,就是不同的排列。

如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列。

再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列。

(2)还需要搞清楚一个问题,“一个排列”是不是一个数?

生:“一个排列”不应当是一个数,而应当指一件具体的事。如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列。如果问飞机票有多少种?能表示出多少种信号。只问种数,不用把所有情况罗列出来,才是一个数。前面提到的第三个问题,实质上也是这样的。

三、 课堂练习

大家思考,下面的排列问题怎样解?

有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)

分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题。

解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱。

第二步从余下的三张卡片中任选符合条件的一张放在第2空箱。

第三步从余下的两张卡片中任选符合条件的一张放在第3空箱。

第四步把最后符合条件的一张放在第四空箱。具体排法,用下面图表表示:

所以,共有9种放法。

四、作业

课本:P232练习1,2,3,4,5,6,7.

排列组合高中教案 2

教学目标:

1、通过动手操作实验发现等底等高的圆柱、圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能用公式解答有关实际问题。

3、培养动手能力和探索意识。

教学重点:

发现关系,得出公式。

教学难点:

发现关系。

教学准备:

多媒体课件。圆柱、圆锥教具,大米。

教学过程:

一、导入

1、我们认识了圆锥,谁来向大家介绍一下圆锥的各部分及其特征。(圆锥的底面是个圆,圆锥的侧面是个曲面。)什么是圆锥的高?(从圆锥顶点到底面圆心的距离叫圆锥的高)。生活中你见过哪些物体的形状是圆锥体的?

2、师:如果要把一根底面直径是10厘米、长30厘米的圆柱形木料,加工成底面直径是10厘米、高15厘米的圆锥。想一想,该怎么办?课件演示:

(1)先在木料上截取长15厘米的一段。

(2)设法在横截面上找出圆心,即圆锥的顶点。

(3)从顶点到下底面削去多余的部分就可制成一个圆锥了。

比一比:制成的圆锥的底面积与截取圆柱的底面积有什么关系?(相等)制成的

圆锥的高与截取圆柱的高有什么关系?(相等)

师:也就是说制成的圆锥与截取圆柱是等底等高的。估计一下,制成的圆锥的体

积与截取圆柱的体积有怎样的关系?(1/2、1/3,圆锥比圆柱体积小……)

师:同学们的估计对不对呢?我们一起来研究“圆锥的体积”。(板书课题)

[评析:教师从把圆柱形木料加工成圆锥的实际问题出发引入新课,别具匠心。目

的有二:一是把新知(圆锥)与旧知(圆柱)联系起� ]

二、探索新知

l.出示圆锥:什么是物体的体积?什么是圆锥的体积?(圆锥所占空间的大小叫做圆锥的体积)。

根据以前的知识要求出这个圆锥的体积有什么办法?(把圆锥浸没在装有水的长方体、正方体或圆柱体容器中,看水面上升的高度,计算出上升的那一部分水的体积,就是这个圆锥的体积)(把圆锥看成一个容器,倒入水,再把水倒人量杯中,水的体积就是圆锥的体积)……

师:这些想法都很好,但有一定的局限性,我们要找一种计算圆锥体积的方法。想一想能不能找到圆锥与以前学过的某种立体图形的体积之间的联系来发现圆锥体积的计算方法。

[评析:教师在这儿强化体和概念很有必要,避免了把教学活动在单纯指导体积公式上面。“怎样求圆锥的体积?”是一个开放问题,学生提出的多种方法更强化了体积意义的认识,有利于空间观念的形成。]

2、讨论:

(1)我们以前学过哪几种立体图形?拿哪种立体图形来帮助研究圆锥的体积更合适?为什么?(因为圆锥有一个圆形底面和一个侧面是曲面,圆柱也有一个圆形的底面和一个侧面也是曲面,用圆柱帮助研究圆锥更方便。)

(2)出示4个圆柱、1个圆锥。

师:这里有4个圆柱,选哪一个来帮助研究圆锥的体积呢?演示比较:圆柱与圆锥等底等高,等底不等高,等高不等底,既不等底又不等高。(选等底等高的圆柱与圆锥研究更便于发现规律。)

(3)出示等底等高的圆柱与圆锥以及一小袋大米,想一想,利用这些材料,你能设计一个实验来研究圆锥的体积吗?

圆柱、圆锥学具都是容器,通过研究容积的实验来得出体积的计算公式。

[评析:教师没有把教学活动简单推向具体的实验操作上面,而在前面组织了两个层次的讨论,有利于培养学生的探究意识;提高探索策略的合理性。教师组织对“体积”和“容积”两个概念的辨析,更使概念准确、严谨,提高了课堂教学的科学性。

3、动手实验:二人一组进行操作,注意观察实验过程。

4、汇报操作过程:往空圆锥里装满米然后倒人空圆柱里倒了三次正好倒满。

发现了什么?(圆柱体积是和它等底等高的圆锥体积的3倍,圆锥体积是和它等底等高的圆柱体积的1/3。)

(学生说圆柱体积是圆锥体积的3倍,师出示不等底等高的圆锥、圆柱,问:圆柱体积还是圆锥体积的3倍吗?)

根据学生回答师板书:V锥=1/3V柱

[评析:让学生放手操作比单纯看书、听讲更有利于知识的内化,这也就是当前流行的“做教学”的思想。值得一提的是,在教具、学具日趋高档化的情况下,组织学生因陋就简就地取材,进行剪一剪、拼一排、移一移、倒一倒等操作活动效果明显,值得提倡。]

练习:根据已知圆柱(或圆锥)的体积,求出与它等底等高的`圆锥(或圆柱)的体积。

师:根据已知圆柱的体积,乘以1/3就可求出与它等底等高的圆锥的体积,如果圆柱的体积不是直接已知的,你能求出圆锥的体积吗?

也就是可以利用圆柱体积公式“V柱=Sh”得出圆锥体积公式“V锥=1/3Sh”。

5、出示例1:一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

师:要求圆锥体积可以用V =1/3Sh,你会求吗?(学生尝试,师巡视)

汇报: 1/3×19×12=76(立方厘米)

答:这个零件的体积是76立方厘米。

“19×l2”求出的是什么?为什么要“×1/3”。

三、巩固应用

l师:要求圆锥的体积必须知道底面积和高,如果底面积不是直接已知,还会求圆锥的体积吗?

求下列圆锥的体积:(板演订正)

底面半径是4厘米、高21厘米。

底面半径是6厘米、高6分米。

底面周长是18.34分米、高2分米。

2、填空:

(1)圆柱圆锥等底等高,圆柱体积是87立方厘米,圆锥体积是( )立方厘米。若圆锥的体积是34立方厘米,圆柱体积是( )立方厘米。

(2)一个底面积是12平方分米、高6分米的圆柱,它的体积是( )立方分米。如果把它削成一个最大的圆锥,圆锥的体积是( )。削去部分的体积是( ),削去部分的体积是圆柱体积的( ),是圆锥体积的( )。

(3)一个圆柱与圆锥等底等高,圆柱体积比圆锥多18立方米,圆柱体积是〔 〕,圆锥体积是( )。

3、判断:

(l)圆锥体积是圆柱体积的1/3。

(2)如果圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。

(3)圆锥的底面积是3平方厘米,体积是6立方厘米。

(4)等底等高的圆柱与圆锥,圆锥体积比圆柱体积小2/3。

4、小结:这节课我们学习了什么新知识?你是怎样学习的?通过动手实验发现了等底等高的圆锥与圆柱之间的体积关系,并由此推导出了圆锥体积的计算公式。同学们学得都很认真,下面老师还要请同学们来动脑筋:

要使等底等高的圆柱与圆锥体积相等,你有什么办法?(生讲师课件演示)

(1)把圆锥的高(或底面积)扩大3倍,使圆锥的体积扩大3倍,与圆柱的体积相等。

(2)把圆柱的高(或底面积)缩小3倍,使圆柱的体积缩小3倍,与圆锥的体积相等。

[评析:练习设计由浅入深,要求逐步提高,学生的思维也逐步得到发展。需要指出的是,练习设计不仅要从教材出发,还要从学生的实际出发,应该避免不切合学生实际的盲目拔高现象。在本课结尾时,教师运用电教媒体,动态展示底面积和高变化的情况,变想象为直观,难点得到突破,学生兴趣盎然,留下精彩回味。]

四、作业

[总评:本课力图摒弃由教师讲、学生听的传统教学模式,学习采用了以生活实际为中心,师生互动“做数学”的新教学模式,并取得了初步成效。教学活动中学生的主体地位得到加强:从发现问题到确定研究方法,从选择实验材料到推出计算公式都由学生参与得到。教师的主导作用也得到充分发挥;从创设情境、穿针引线到启发引导、查漏补缺,不失时机地把教学活动一波一波地推向高潮。

全课教学设计结构严谨、条理清楚。既抓住了知识的整体落实、更注意了学生能力的培养,还不放过细微环节的科学处理,是一节基础扎实、效果良好、具有新意的好课。]

展示反馈变学会为会学 3

根据低年级学生的心理特征和本节课的教学重难点,我在练习设计时注重了目标明确、重点突出、形式多样、有趣味性、联系生活,从而体会生活中处处有数学。仍然围绕蓝猫问题为情境,以搭配、起名、走路、号码为载体,以训练为主线,以培养领袖儿童各种能力为目的,给学生搭建了一个展示反馈的平台,让所学的排列组合知识在这里得到应用,让学生的参与热情在这里得到高涨,让整节课在这里得到升华。

排列与组合教学反思 4

《排列与组合》是体现数学生活化的一个很好例子。说实话,对怎么把握好“排列与组合”这个内容,课前我总是犹豫不决。《标准》中指出:在解决问题的过程中,使学生能进行简单的、有条理的思考。

因此我试图在本节课中把数学思想方法通过日常生活中最简单的事例呈现出来,并运用操作、实验、猜测等直观手段解决这些问题。重在向学生渗透这些思想方法,并初步培养学生有顺序地、全面地思考问题的意识。

一、突出活动,让学生中实践中学习和感受数学知识。

通过多次的实践活动,学生对排列与组合有了比较具体的感受,在多种实践活动中加深理解排列与组合的思想。

二、给学生充足的探究空间。

在诸多的想法中找出最佳的排列方法,我让学生小组观察、比较、分析,说说�

三、将实践活动数学化。

比如握手问题。通过生生互动、师生互动,学生已掌握三个人每两人握一次手,一共可以握三次,那么如何内化为数学知识是一个重点。因此,我让学生想“假如在考试的时候,没有人可以和你握手,该怎么办?”引导学生想出用符号来表示,其实这就是数学化的过程。

总之,我想让学生在轻松愉快的活动中,理解排列与组合的思想方法。然而,本节课也发现不少问题。比如最后的路线问题,这是一道拔高题,学生明显感到了困难,这是备课中我没有预想到的,今后在“备学生”方面还要下功夫。

《排列与组合》教案 5

《排列与组合》教案

对于学习来说,人的最有价值的财富是一种积极的态度,让学生做课堂的主人。改变学生学习数学的状态是新一轮课程改革的首要任务之一,是每一个教育工作者面临的课题。教学中,教师要给学生营造民主、和谐、和富有个性的学习氛围,提供充分参与数学活动的机会,激起学生 学习兴趣和积极主动性,让每个学生都能快快乐乐地学习数学,成为学习的主人。

《排列与组合》是义务教育数学课程标准实验教科书数学(人教版)二年级上册的教学内容。排列与组合的思想方法不仅应用广泛,而且是学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。在教学中,我运用开放式教学方式,把课堂交给学生,让学生当好学习的主角。

片断与反思

(片断一)

师:森林学校的数学课上,猴博士出了这样一道题(课件出示)用数字1、2能写出几个两位数?问题刚说完小动物们都纷纷举手说能写成两个数:12、21。接着猴博士又加上了一个数字3,问:“用数字1、2、3能写出几个两位数呢?”小猪站起来说能写成3个,小熊说5个,小狗说7个,到底能写出几个呢?

生1:我猜有5个。

生2:我猜有8个。……

师:到底有几个两位数呢?请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。

学生活动教师巡视。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)

生1:我写的数有12、21、13、32、23。

生2:我写的数有12、31、23、21、23、32。

生3:我写的数有12、13、21、23、31、32。

学生汇报所写个数,教师根据情况重点展示几份,引导学生发现问题:有的重复写了,有的漏写了。

师:每个同学写出的个数不同,怎样才能很快写出所有的用数字1、2、3组成的两位数,并做到不重复不遗漏呢?

学生以小组为单位交流讨论。

学生汇报:

生1:先写出1在十位上的有12、13;再写出2在十位上的有21、23;再写出3在十位上的有31、32。

生2:用数字1、2能写出12、21;用数字2、3能写出23、32;用数字1、3能写出13、31。

生3:先写出个位是1的有21、31;再写出2在个位上的有12、32;再写出3在个位上的有13、23,小学数学教案《让学生做课堂的主人》。

(引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。)

(反思)

排列与组合是学生新接触的知识领域。在开课时用学生感兴趣的'童话故事引入,易激起学生探究的兴趣。学生根据自己的实际情况选择不同的方法探究新知体现了不同的孩子用不同的方式学习数学这一新的教学理念,易于吸引不同层次的学生积极主动的参与到活动中来。

引导学生发现写数过程中出现的问题,并就此展开讨论、交流,遵循了学生的认知特点。学生在交流的过程中体验到解决问题方法的多样性,并根据自己的实际选择不同的方法,尊重了学生的主体地位。在此过程中学生收获的不仅是知识本身,更多的是能力、情感。这一过程中培养了学生主动探究的学习习惯,学生都能大胆的说出自己的见解、方法,也训练了说话能力。

(片断二)

故事引入

师:下课了小狗、小熊、小猪做“找朋友”的游戏,好朋友见面之后要握握手,每两只小动物握一次手,小狗、小熊、小猪一共握几次手?怎样握?

学生在充分独立思考的基础上展开小组交流,并3人一组亲身实践一下。

汇报思考的过程。

小组1:我们这一组中,我和另外两人各握了一次,他们两人握了一次,一共是3次。

小组2:我们这一组依次按顺序握手,也是握了3次。

师:刚才我们帮森林学校的小动物们解决了用数字1、2、3能写几个两位数;3只小动物每两个握一次手共握几次手的问题,森林学校的小动物们直夸同学们聪明呢!通过解决这两个问题你发现了什么?

生:用3个数字能写出6个两位数。

生: 3只小动物每两人握一次手共握3次。

生:排数时有顺序,顺序不同数就不同。而握手就只是两个人,不管顺序。

(引导学生明确排列与顺序有关而组合与顺序无关。)

师:小狗要参加学校的时装表演,妈妈为它准备了4件衣服(课件出示2件上衣、2件裤子的图片),请你帮小狗设计一下共有多少种穿法。如果需要的话可以用学具摆一摆。

学生交流想法。(略)

(反思)

通过比较,明确排列与组合两种问题的同与不同,便于建立起清晰的知识结构,进一步深化学生的认识。学习的目的是为了应用,安排用同一条故事主线贯穿整节课的始终,以问题串的形式展开全课,能让学生始终保持浓厚的学习兴趣,充分体验到数学与生活的联系。为小狗穿衣服的练习,学生能自主的选择方法进行,培养了学生的自主学习能力。在儿童的生活经验里已经积累了一些搭配衣服,购物花钱的知识经验,所以学生乐于参与。借助生活经验丰富学生数学思维,使学生体会到生活中处处有数学。实践证明,课堂中学生兴趣高涨,气氛活跃。学生运用数学知识解决了身边的问题,使学生的实践能力得到培养,同时使学生逐步学会用数学的眼光去观察和认识周围的事物,他们的数学能力、应用意识、实践能力得到培养和发展。

排列组合教案 6

教学内容

义务教育课程标准实验教科书(人教版)二年级上册第八单元第一课时

教学目标:

知识目标:

使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

能力目标:

培养学生有顺序地、全面地思考问题的意识。

情感目标:

使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。

教学重点:

经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学环节

一、创设情境,导入新课

今天,我们来上一节数学活动课,大家乐意吗?(板书课题)现在大家来看一下我们的活动目标。(课件出示活动目标)

师:老师给大家带来了一个新朋友,课件出示圣诞老人画面,圣诞老人过生日了,想请大家参加他的生日聚会,但是他有要求。通过圣诞老人提出本节课任务。

二、合作学习,构建模型

(一)初步感知。课件出示:

第一关:摆一摆,猜密码。(用数字卡片

1、2能排成几个两位数自己动手摆一摆)让学生自己动手摆卡片后,指名汇报。

(二)合作探究。课件出示:

第二关:摆一摆,比一比(用数字卡片1、2、3能摆成几个不同的两位数)比比看,哪个组找的最多。

小组探讨,组长把大家的讨论结果记录在练习本上。(活动开始,教师巡视。)

以组为单位派代表汇报。

师:有的组摆出了4个不同的两位数,有的组摆出了6个不同的两位数,你们是怎么摆的?有什么好办法?

(鼓励方法的多样化,对各组的不同方法进行肯定和表扬。)结合发言,引导学生进行评价,选出优胜组。

师生共同归纳:用数字排列组成数,要按照一定的顺序确定十位上的数,然后考虑个位上有哪些数可以与其搭配。

(三)握一握。课件出示:小精灵说的话。

恭喜你们成功的度过了前两关,现在,我们握手祝贺一下。师:每两人握一次手,三人一共握几次手?(小组活动,教师巡视)活动后,小组指名汇报。

师:究竟是几次呢?请大家互相握握看吧!请一个组的同学上台演示,其他同学一起数数。

(四)课件出示:

师:圣诞老人决定奖励你们两件上衣、两条裤子,那么一共有几种搭配方法呢?(课件出示图片。)

学生拿出学具卡片,小组活动解决问题。汇报交流,说说自己为什么这样设计。

三、分层练习,巩固新知

(一)付钱问题。

课件出示:99页做一做2题

小组讨论,小组长统计本组学生答题情况,并由小组代表汇报。

(二)拍照站法。

小丽、小芳、小美在风景如画的郊外游玩,三人想站成一排拍照留念,她们有几种站法?

小组讨论后,由一组学生上台演示,其他学生数一数。

排列与组合教学反思 7

这次骨干教师课堂教学考评我抽到的题目是二年级上册第八单元的《数学广角——简单的排列》。与原来教材不同的是:新教材安排了两个例题,分别将排列与组合渗透其中,为了让学生学得更好、更透,我这节课单独教授例1,努力让学生经历探索简单事物排列规律的过程,掌握简单事物的排列规律、方法。我觉得在本节课中以下几个方面处理得比较好:

一、创设学生喜欢的情境,激发学生探究的兴趣。

排列的思想方法在生活中有广泛的应用,同时也是发展学生抽象能力和逻辑思维能力的有益载体。为了调动起学生学习的积极性,让学生在轻松愉快的气氛中学习,我以学生喜欢的动画情景,设计了以“解救美羊羊”为主线,展开一系列的具有挑战性的学习活动,活动中把排列的思想方法渗透给学生,让学生在不知不觉中去感知什么是排列及排列的方法。整课节始终用创设的情境来吸引学生主动参与,将排列问题趣味化,有效地激发学生的学习热情。

二、深挖教材,教学设计有层次

本节课在新课部分一共设计了三组问题,问题的设计体现了由易到难、由浅入深、层层推进的原则。让学生逐步感悟有序思维的必要性。

第一组猜老师的年龄情境,由于老师的年龄是由9、2两个数字组成的两位数,非常简单,学生会轻而易举的找到答案,在这一过程主要是让学生体会到数字组合的奥妙,为后面的教学做好铺垫。第二组问题是在第一组问题的基础上的一个升华。想要进入城堡就要输入正确的密码,而密码是由1、2、3,这三个数中的两个数组成的两位数。引导学生根据自己的实际情况选择不同的方法探究新知,尊重了学生个性的差异,使每个学生在原有的基础上得到自由发展的空间。小组讨论又使学生主动去挖掘排列背后的秘密。

第三组问题三人玩照相的位置排列,能有多少种不同的排列方法?这道题没有给出具体的数字,给出的是直接让学生来排列,这样难度就加大了。这就激发学生用之前学过的有序思维的方法来尝试解决问题。把卡通人物用数学符号来表示,同时是3个数排列不同3位数的情况,随着难度的增加,学生也意识到必须有序思考,按一定的方法才能做到不重复、不遗漏。

另外在练习的设计上,我也让练习体现出不同的层次。第一道练习是让学生从3个数中选出2个数,组成电话号码的后两位,有多少种不同的组法。这道题和例题的难度是一样的,但是之所以设计,是因为例题对于二年级的学生来说还是有一定的难度的,所以让学生能结合生活中的例子,把学过的知识再巩固一遍也是很有必要的。同时这道题也让学生初步体会到排列在生活中的应用。

第二道练习题,设计了用4、0、7组成不同的三位数,各个数位上的数不能重复。在完成了照相问题后,出示这道练习,目的在于一方面可以让学生尝试用学过的知识来排列数,让学生掌握了序思考普遍规律的同时,也要考虑到一些特殊的情况,比如在组数时,0不能再最高位。

正因为把握好了问题和练习设计的梯度,才使学生在不断地探索、实践、再探索、再实践的过程中体会到排列组合中的规律:不重复、不遗漏、有顺序,全面的思考方法。

三、巧妙利用学生生成资源突破重难点

课堂中的动态生成的资源包含了学生在课堂出现的错误、质疑、想法,捕捉和利用课堂教学中生成性动态教学资源,对于转变课程功能、改进学习方法、开发课堂教学的深度具有重要意义。

1、巧用“错误”资源,激发思维的深度空间。

心理学家盖耶认为:“谁不考虑尝试错误,不允许学生犯错误,就将错过最富有成效的学习时刻。”作为教师,要将学生的错误视为学生学习过程中的必然现象,要允许学生出错,更要将学生的错误作为促进学生情感、智力发展的教学资源,正确、巧妙地加以利用。课堂,是学生可以出错的地方,学生出错的课堂才是真实的课堂,真实的课堂会因错误、发现、探究、进步的良性循环而充满活力。学生的机智和智慧就在“出错”和“改错”的探究过程中形成和积累,学生对知识的认识会更加深刻,有效的激发了学生思维的深度空间。

在这节课当中,我就收集了学生写遗漏和重复的作业单,通过让学生观察、对比,从中发现问题,同时也引导学生思考和探究——怎样做才能不重复、不遗漏。

2、巧用“想法”资源,激发创新的深度空间。

在动态生成的课堂上,首先教师应明确学生是数学学习的主人,必须尊重学生的想法。要知道学生是各不相同的,他们并不是用完全相同的方式来思考问题的,教师必须尊重学生的想法,真正给学生自主学习的权利。学生的一些非同寻常的想法,往往可能蕴涵着创新的思维、智慧的火花。

比如在用1、2、3组不同的两位数时,有个学生是这样写的:

她采用的虽然也是固定十位的方法,但是她这样的表示方式看起来更直观,也更容易掌握。这是我没有想到的方法,我放弃了自己之前预设好的写法,重点介绍了她这种方法。在后面的练习中很多学生都采用了这种方法,既没有重复也没有遗漏,而且速度也很快。

还有一位同学在解决3个小朋友照相有多少种不同排法的问题时,她是这样做的:

排列组合教案 8

【背景】

为了进一步提高堂效率,提升学生学习力,逐步落实数学堂与“学习力”相结合的自学为主堂教学模式,提升青年教师的整体素质,进步培养青年教师良好的教学能力。我们二年级数学组于XX年10月开展了全员赛活动,并取得了良好效果。本篇教案集授教师努力及组内教师智慧,较能体现学校的主流教学模式,是一篇优秀的案例。

【教材简析】

本节的内容是数学二年级上册数学广角例1简单的排列与组合。排列和组合的思想方法应用得很广泛,是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透这一数学思想方法时就做了一些探索,把它通过学生日常生活中最简单的事例呈现出来。

教材的例1通过2个卡片的排列顺序不同,表示不同的两位数,属于排列知识,而简单的排列组合对二年级学生来说都早有不同层次的接触,如用1、2两个数字卡片来排两位数,学生在一年级时就已经掌握了。而对1、2、3三个数字排列成几个两位数,也有不少学生通过平时的益智游戏都能做到不重复、不遗漏地排列。针对这些实际情况,在设计本节时,根据学生的年龄特点处理了教材。整堂坚持从低年级儿童的实际与认知出发,以“感受生活化的数学”和“体验数学的生活化”这一教学理念,结合实践操作活动,让学生在活动中学习数学,体验数学。

【教学目标】

1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;

2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;

3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

【教学重点】

经历探索简单事物排列与组合规律的过程

【教学难点】

初步理解简单事物排列与组合的不同

【教学准备】

多媒体、数字卡片。有关北京景色的、生字词卡。

【课前预习】

预习数学书99页,思考以下问题

1、用1、2两个数字能摆出哪些两位数?

2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。

3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。

【教学过程】

1、合作探究排列

师:同学们,请看这就是数学广角乐园,数学广角里给我们准备了这么多的闯关游戏,敢不敢试一试?(不怕)你们真是勇敢的好孩子。咱们先来创第一关。

(出示:用数字卡片1、2、3可以摆成几个不同的两位数呢?)

师:第一关,用数字卡片1、2、3可以摆成几个不同的两位数呢?

生汇报。对不对呢?我们来验证一下,听清要求。

同桌合作,一人摆数字卡片,一人把摆好的数记录下来,写好马上做好,比比哪桌合作得又好又快。

实际操作,教师巡视。

板演反馈,同时汇报不同的摆法和想法。

无顺序的汇报→正确的汇报→比较方法→学生说方法→师板书→起名称

师:请把你写出的两位数读出来(无序→正确,师板书,),比较一下谁的更全面一些?(提问其他的答案),为什么XX同学没有完全摆对而这名同学却摆得这么准呢?他有什么诀窍吗?(生边回答师边数字板演示,并进行板书)

师:谁能给这个方法起一个名字呢?

谁还有其它的方法要介绍给大家?

象这�

师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律进行。顺利过关,进入下一关

2、感知组合

师:同学们,第二关问题是:如果三个人握手,每两个人握一次,三人一共要握多少次呢?

师:大家看,我在和他握手,他也在和我握手,不管我们的位置如何变化只要我们的手不松开我们两个人就是只握了一次手。

那三个人握手到底要握几次?以小组为单位,组长记录次数,其他三人演示,看看每两个人握一次手,三个人一共要握手多少次?

师:两个人握一次手,三人一共要握3次手。

(板书展示握手过程)

3、对比思考——追寻本质

师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?

结论:摆数与顺序有关,握手与顺序无关。

摆数可以交换位置,而握手交换位置没用。

【反思】

本节体现了两个特色

1、预设有效问题是进行数学思维的关键

“思”源于“问题”,要通过“问题解决”使儿童获得知识、方法、能力及思想上的全面发展,首先要有一个好“问题”。因为学生数学思考的形成就是借助于对这些“问题”的思考及通过对这些问题的解决过程之中。在这节中,在每一个活动之前,教师都为学生创设了一个感兴趣的,具有现实意义的问题:“用1、2、3这三个数字,可以编出几个两位数呢?”、“三个人每两人互相握一次手,一共要握几次手?”只有面对这样的好“问题”,学生才能自觉的全身心地投入到问题解决之中,才能通过对这些问题的分析、比较,对这些规律的观察、感悟,对所得结论的描述、解释。而这一过程又正是学生形成数学思考的过程。

2、逐步感悟有序思维的必要性

有序思维在日常生活中有着广泛的用途,让学生通过学习逐步感悟到有序思维的必要性就显得犹为重要了。用1、2、3这三个数字,可以编出几个两位数,让学生非常自然地、主动地进行猜数,并产生怎样思考才能既不重复也不遗漏的问题,激发学生的学习兴趣。接着,通过学生独立思考“用1、2、3写(摆)两位数”引导学生根据自己的实际情况选择不同的方法探究新知,尊重学生的个性差异,使每个学生在原有基础上得到完全、自由的发展,初步感悟有序的写(摆);交流讨论,再说一说你是怎么写(摆)的,它好在哪里?等问题,促使学生去观察、去发现,促进了学生对其隐藏着的数学思想的领悟、认识;最后通过全班交流,引导学生得到了两种基本的排序方法(列表法和图示法),进一步体验到按一定的顺序思考的价值并初步掌握方法。最后,抓住鼓励表扬的握手游戏这一契机,突破教学的难点(初步理解简单事物排列与组合的不同)让学生通过猜一猜、演一演等形式,使他们对其规律进行本质的探究,在活动中体验感受排列与组合的不同。这里,学生经历了猜想、验证、反思等一系列探索活动,体会到思之要有“据”、思之要有“理”、思之要有“序”,这不仅是让学生在活动中学会思考,更是让学生在探究活动中学会科学的探究方法。

这节注重了排列组合的有序性,而对排列组合的合理性诠释得还不够到位。还有些堂上的动态生成的资源捕捉利用不够及时到位等等。我想这在以后教学中还应多反思,多注意的。

《组合排列二项式定理》教学设计 9

《组合排列二项式定理》教学设计

教学目标

(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;

(2)能结合树形图来帮助理解加法原理与乘法原理;

(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;

(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;

(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。

教学建议

一、知识结构

二、重点难点分析

本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。

加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。

两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是, 做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。

三、教法建议

关于两个计数原理的教学要分三个层次:

第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).

第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):

①用0,1,2,……,9可以组成多少个8位号码;

②用0,1,2,……,9可以组成多少个8位整数;

③用0,1,2,……,9可以组成多少个无重复数字的4位整数;

④用0,1,2,……,9可以组成多少个有重复数字的4位整数;

⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;

⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.

第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理.

教学设计示例

加法原理和乘法原理

教学目标

正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.

教学重点和难点

重点:加法原理和乘法原理.

难点:加法原理和乘法原理的准确应用.

教学用具

投影仪.

教学过程设计

(一)引入新课

从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.

今天我们先学习两个基本原理.

(二)讲授新课

1.介绍两个基本原理

先考虑下面的问题:

问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?

因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.

这个问题可以总结为下面的一个基本原理(打出片子——加法原理):

加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.

请大家再来考虑下面的问题(打出片子——问题2):

问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?

这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.

一般地,有如下基本原理(找出片子——乘法原理):

乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法.

2.浅释两个基本原理

两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.

比较两个基本原理,想一想,它们有什么区别?

两个基本原理的区别在于:一个与分类有关,一个与分步有关.

看下面的分析是否正确(打出片子——题1,题2):

题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.

1~10中一共有N=4+2+1=7个合数.

题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?

第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.

题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.

从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.

(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)

进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.

如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.

也就是说:类类互斥,步步独立.

(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)

(三)应用举例

现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.

例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.

(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?

(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?

(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)

(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是

N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.

(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原理,得到不同的取法种数是N=m1×m2×m3=3×5×6=90.故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.

(3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的`取法种数是N=3×5+3×6+5×6=63.即,从书架任取不同科目的书两本的不同取法有63种.

例2 由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?

解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是N=4×5×5=100.

答:可以组成100个三位整数.

教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础。

(四)归纳小结

归纳什么时候用加法原理、什么时候用乘法原理:

分类时用加法原理,分步时用乘法原理.

应用两个基本原理时需要注意分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.

(五)课堂练习

P222:练习1~4.

(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

(六)布置作业

P222:练习5,6,7.

补充题:

1.在所有的两位数中,个位数字小于十位数字的共有多少个?

(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.

(提示:需要按三个志愿分成三步,共有m(m-1)(m-2)种填写方式)

3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?

(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)

4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?

(提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语.

(1)N=5+2+3;(2)N=5×2+5×3+2×3)

排列组合高中教案 10

10.2排列第三课时

教学目标:

能把一些简单问题中的具体的计算“个数”问题转化为排列,以及排列数的计算,从而解决一些简单的排列问题.

教学过程:

【设置增境】

问题1什么叫做排列?

问题2什么叫做排列数?排列数的公式是怎样的?

(由一名学生回答,教师纠正,引入新课.)

我们已经从分析具体的例子出发,得到了排列的概念,推导了排列数的公式,具备了一定的计算能力,就是说掌握了有关排列的一些基础知识.那么,如何运用这些知识来解关于排列的简单应用题呢?

【探索研究】

例1某年全国足球甲级(A组)联赛共有14个队参加,每队都要与其余各队在主、客场分别比赛一次,共进行多少场比赛?

分析:很明显,这个问题可以归结为排列问题来解,任何2队间进行一次立场比赛和一次客场比赛,对应于从14个元素中任取2个元素的一个排列,因此总共进行的比赛场次数等于排列数.

解:(场)

答:共进行了182场比赛.

教师归纳.(投影出示)

在解排列应用题时,先要认真审题,看这个问题能不能归结为排列问题来解,如果能够的话,再考虑在这个问题里:

(1)n个不同元素是指什么?

(2)m个元素是指什么?

(3)从n个不同元素中取出m个元素的每一种排列,对应着什么事情?

要充分利用“位置”或框图进行分析,这样比较直观,容易理解.

例2(l)有5本不同的书,从中选3本送给3名同学,每人1本,共有多少种不同送法?(2)有5种不同的书,要买3本送给3名同学,每人1本,共有多少种不同的送法?

解:(l)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同的送法种数是

(2)由于有5种不同的书,送给每个同学的书都有5种不同的方法,因此送给3名同学每人1本书的不同方法的种数是

答:略.

(教师点评这两道题的区别.)

例3某信号共用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示,每次可以任挂l面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?

解:如果把3面旗看成3个元素,则从3个元素中每次取出1个、2个或3个元素的。一个排列对应一种信号.

于是,用1面旗表示的信号有种,用2面旗表示的信号有种,用3面旗表示的信号有种.根据分类计数原理,所求信号的种数是

++=15.

【演练反馈】

1.4辆公交车,有4位司机,4位售票员,每辆车上配一位司机和一位售票员,问有多少种不同的搭配方案?

2.由数字1,2,3,4,5,6可以组成多少个没有重复数字的正整数?

3.20位同学互通一封信,那么通信的次数是多少?

【参考答案】

1.提示:种

2.提示:个

3.提示:次

【总结提炼】

排列问题与元素的位置有关,解排列应用题时可从元素或位置出发去分析,结合框图去排列,同时注意分类计数原理与分步计数原理的运用.

布置作业:

1.课本P95练习5,6.

2.从4种蔬菜品种中选出3种分别种在不同土质的3块土地上进行试验,共有多少种不同的种植方法?

排列组合教案 11

教学内容背景材料:

义务教育课程标准实验教科书(人教版)二年级上册第八单元的排列与组合

教学目标:

1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

2、经历探索简单事物排列与组合规律的过程。

3、培养学生有序地全面地思考问题的意识。

4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。

教学重点:

经历探索简单事物排列与组合规律的过程。

教学难点:

初步理解简单事物排列与组合的不同。

教具准备:

乒乓球、衣服图片、纸箱、每组三张数字卡片、吹塑纸数字卡片。

一、情境导入,展开教学

今天,王老师要带大家去“数学广角”里做游戏,可是,我把游戏要用的材料都放在这个密码包里。你们想解开密码取出游戏材料吗?(想)我给大家提供解码的3个信息。

1. 好,接下来老师提供解码的第一个信息:密码是一个两位数。(学生在两位数里猜)(你们猜的对不对呢?请听第二个解码信息)

2. 下面,提供解码的第二个信息:密码是由2和7组成的(学生说出27和72)。能说说看你是怎么想的吗?

3. 下面,提供解码的第三个信息:刚才说了密码可能是27也可能是72。其实这个密码和老师的年龄有关。哪个才是真正的密码是?(学生说出是27)到底是不是27呢?请看(教师出示密码)。真的是27,恭喜大家解码成功!

二、多种活动,体验新知

1、感知排列

师:请小朋友先到“数字宫”做个排数字游戏,好吗?这有两张数字卡片(1 、2)(老师从密码包里拿出),你能摆出几个两位数?(用数字卡摆一摆)

生:我摆了两个不同的数字12和21。(教师板书)

师:同学们想得真好。我又请来了一位好朋友数字3,现在有三个数字1、2、3,让大家写两位数,你们不会了吧?(会)别吹牛!(真的会)好,下面大家分组合作,组长记录。看看你们能够写出几个不同的两位数,注意不要重复,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。好,开始。

学生活动教师巡视并参与学生活动。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)哪组同学来给大家汇报一下。(教师板书结果。)有没有需要补充的呀?

2、探讨排列方法。

有的小组摆出4个不同的两位数,有的小组摆出6个不同的两位数,有什么好的方法能保证既不重复,也不漏掉数呢?还请大家分组讨论。看一看哪组同学的方法最好!(小组讨论,分组交流,学生总结方法。)哪组同学来给大家汇报一下你们的想法?

方法1:我摆出12,然后再颠倒就是21,再摆23,颠倒后就是32,再摆13,颠倒后就是31,一共可以摆出6个两位数。

方法2:我先把数字1放在十位上,然后把数字2和3分别放在个位组成12和13;我再把数字2放在十位上,然后把数字1和3分别放在个位组成21和23 ;我再把数字3放在十位上,然后把数字1和2分别放在个位上组成31和32 ,一共摆出了6个两位数。

3、老师和学生共同评议方法:让学生选择自己喜欢的方法再摆一摆,学生试着总结。(如果学生说不出方法2,老师就直接告诉学生)

3、感知组合。

师:你们真是一群善于动脑的好孩子。来,咱们握握手,祝贺祝贺!加油!

简单的排列与组合教学反思 12

简单的排列与组合教学反思

课前,我一直在担心二年级的学生能否理解掌握《简单的排列与组合》这一课。今天上完这节课时,我是怀着一种轻松愉悦的心情走出教室。因为,孩子们学得非常的好,这些7岁的孩子不但能理解和掌握《简单的排列与组合》,而且能做到熟练的运用。

在教学例1时:

1、让学生拿出数字卡片1、2摆两位数,学生很快的摆出12、21。

2、让学生独立用卡片1、2、3摆两位数,一边摆一边把摆出的数记录在学习纸上。

3、小组交流讨论,谁方法最科学、不会漏掉。

4、让学生到前面的黑板上展示交流小组讨论的结果。

三人到前面展示,其中

2名同学的方法是:

十位上的数字是1,个位上的数字是2或3,组成的两位数是12,13;

十位上的数字是2,个位上的数字是1或3,组成的两位数是21,23;

十位上的数字是3,个位上的数字是1或2,组成的两位数是31,32;

一名同学的方法是:

用数字1、2来摆,可以摆出的数是12、21;

用数字1、3来摆,可以摆出的数是13、31;

用数字2、3来摆,可以摆出的数是23、32。

同学们都很赞同这两种方法,于是我给这两种方法称为“2钟法”和“叶氏法”

当其他学生学习了这两种方法后,在练习中我又让学生用数字卡片“0、3、9”摆两位数。

我想,学生这时肯定遇到困难了,他们一定会为“03、09”是不是两位数展开争论。没想到,大部分学生都没有一个是写6个两位数。用“2钟法”写出了4个数:30、39、90、93“叶氏法”写出03、30、09、90、39、93(学生是把039删去的)。就这样,这部分让我担心孩子们会学不懂的知识,在孩子们的自主探究、小组合作学习中顺利地学会并做到了熟练的运用,教学效果真的很好。

小组合作握手游戏,感知组合知识。 13

承上一活动,门终于开了同学互相握手表示祝贺,从而引出:三个人之间可以握几次手呢?先让学生猜猜看?经过上面的学习,学生可能会猜是6次,也有的'可能猜是3次,到底是几次呢?学生亲自握手试一试!此时我也走下讲台参与到学生的活动中,并重点指导有顺序的握手。小组活动结束后,请一小组上台展示握手情况,在巩固了有序思考问题的同时,引导学生用图示来表示握手的方法。这样设计,既能使学生在握手的游戏中体验知识的形成过程,又可 另外,用图示来抽象形象的表示握手的方法,这又是一次数学思想方法的渗透。

《不一样的车牌》大班教案 14

教学目标:

1、有观察各种车辆特点的兴趣,知道车牌的用途。

2、对一组数字出现不同的排列组合有兴趣,探索不同的排列组合的方法。

3、培养幼儿比较和判断的能力。

4、引导幼儿积极与材料互动,体验数学活动的乐趣。

5、培养幼儿对数字的认识能力。

教学准备:

(认知准备)认识数字及常见的汉字若干。

(材料准备)各种各样的新车的图片;数字板人手一份;汉字“沪、京、浙”等;记录纸人手一份等;

重点与难点:

知道相同的数字经过不同的排列会产生很多不一样新的数字组合。

教学过程:

一、欣赏:各种各样的车辆。

1、 出示各种新车,说一说自己认识的车辆。

“认识图片上的哪种车?你喜欢那一款车,为什么?”

2、 找找说说每辆车的异同,引出车牌的不一样。

二、认识:车牌

1、 知道车牌的作用。

“尽管车辆的种类很多,但是还是有越来越多的人们买了同一款的车。当马路上出现很多同一款的车子时,有什么方法区分它们呢?”

——通过车牌号码。

2、 知道车牌上有很多的符号,代表不同的含义 “车牌上有很多符号,都有些什么?”

——数字0—9;中国字:英语字母。

3、出示汉字“沪、京、浙”等,知道这些中国字的含义。

——代表中国各个地区的简称。

小结:车牌由汉字、字母和数字组成,这样就不会出现两个完全一样的车牌号码了,通过车牌我们就可以将车子区分出来。

三、排列:不一样的车牌

1、讨论:是不是相同的数字排出的号码就一定相同吗?

2、操作:幼儿操作数字板,将“1、2、3”三个数字进行排列,看看可以排出哪些车牌号码。并将结果记录下来。 重点和难点1:相同的数字经过不同的。排列会产生很多不一样新的数字组合,鼓励幼儿一定要排出不同的数字组合。

3、 交流总结:3个数字可以排出排出6种不同的顺序。

4、 在给幼儿加上一个数字“4”,看看4个数字可以排出几种顺序?幼儿操作记录。

重点和难点2:交流——如何将数字排列整齐?

以“1”为首时,4个数字有几个排序方法?

帮助幼儿小结:以“1”为首时,我们就可以排列出6种不同的车牌号码,再算上当“2”“3”“4”打头时,就会有更多的号牌。

四、延伸:鼓励幼儿在个别化学习活动中继续统计4个数字的排列,并记录,看看谁记录的不重复的数字组合又多又准确。

教学反思:

我对幼儿的生活经验的了解也不够深入,以为幼儿在日常生活中观察到车牌,因此有这方面的经验,但从这次活动的情况看,其实他们这方面的经验几乎是极少的。因此,这个活动前,其实可以丰富小朋友的这些经验,把开始部分的内容变成一个活动来开展,接着让小朋友在日常生活中观察车牌,有了前期的准备以后,小朋友对车牌数字变化的兴趣就会很高,能掌握车牌号码的数字排列变化。

排列组合教案 15

【背景】

在日常生活中,有很多需要用排列组合解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复、不遗漏。

【教材分析】

“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。

【教学目标】

1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;

2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;

3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

【教学重点】

经历探索简单事物排列与组合规律的过程

【教学难点】

初步理解简单事物排列与组合的不同

【教学准备】

多媒体、数字卡片。

【教学方法】

观察法、动手操作法、合作探究法等。

【课前预习】

预习数学书99页,思考以下问题:

1、用1、2两个数字能摆出哪些两位数?

2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。

3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。

【教学准备】

PPT

【教学过程】

……

一、以游戏形式引入新课

师:同学们,今天老师带大家去数学广角做游戏。在门口设置了?,?上有密码。这个密码盒的密码是由数字1、2组成的一个两位数,想不想进去呢?

师:谁告诉老师密码,帮老师打开这个密码盒?(生尝试说出组成的数)

生:12、21

师:打开密码盒

师:打开了密码锁,进入数学广角乐园。一关一关的进行闯关活动。第一关:1、2、3能摆出哪些两位数?第二关:如果3人见面,每两个人握一次手,一共要握几次手?

(设计意图:不拘泥于教材,创设学生感兴趣的游戏引入新课,引起学生的共鸣。同时又渗透了简单组合及根据实际情况合理选择方法的数学思想,起到了一举两得的作用。)

二、游戏闯关活动对比

师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?

结论:摆数与顺序有关,握手与顺序无关。

摆数可以交换位置,而握手交换位置没用。

(设计意图:以相同数量进行对比,为什么数字要比握手多一半呢?引发学生知识冲突从而引发思考,激发学生的求知欲。)

三、应用拓展,深化探究

1、数字宫

师:第三关现在我们去那里玩呢?我们一起看看!

从0、4、6中选择两个数字排成两位数,有几种排法?

总结:为什么和上面发现的结果不一样呢?问题出在谁的身上呢?(0)

为什么?(0不能做一个数的第一位)

2、选择线路

师:同学们,米老鼠带我们欣赏完数学广角,准备回家了,有几条路供它选择?演示:

问题:数学城堡到家里,到底有几种走法呢?

(1)分组讨论。

(2)学生汇报,教师演示。

(3)板书:A——C A——D A——E B——C B——D B——E

(设计意图:题目层次性强,与生活联系密切。不同的人在数学上得到不同的发展,人人学有价值的数学。)

【反思】

本节课的设计做到了以下几个亮点突破:

1、创设游戏情境,激发学生探究的兴趣。

整课节始终用创设的游戏情境吸引学生主动参与激发积极性。我设计了:门上的锁密码是多少?本节课通过闯关游戏创设“数字排列”中有趣的数字排列,激发了学生解决问题的探究欲望。又如通过创设“握手活动”与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题的兴趣。

2、课堂中始终体现以学生为主体、合作学习。

“自主、探究、合作学习”是新课程改革特别提倡的学习方式。本节课设计时,注意选则合作的时机与形式,让学生合作学习。在教学关键点时,为了使每一位学生都能充分参与,我选择了让学生同桌合作;在解决重难点时,我选择了学生六人小组的合作探究。在学生合作探究之前,都提出明确的问题和要求,让学生知道合作学习解决什么问题。在学生合作探究中,尽量保证了学生合作学习的时间,并深入小组中恰当地给予指导。合作探究后,能够及时、正确的评价,适时激发学生学习的积极性和主动性。

3、让学生在丰富多彩的教学活动中领悟新知。

本课通过组织学生主动参与多种教学活动,充分调动了学生的多种感悟协调合作,既让学生感悟了新知,又体验到了成功,获取了数学知识,真正体现了学生在课堂教学中的主体地位。

《不一样的车牌》大班教案 16

活动目标:

1、有观察各种车辆特点的兴趣,知道车辆的用途。

2、对一组数字出现不同的排列组合感兴趣,探索不同的排列组合的方法。

3、大胆说出自己的理解。

4、培养幼儿敏锐的观察能力。

活动准备:

1、各种各样新车的照片或图片

2、数字“1、2、3、4”若干套

3、汉字“沪”“京”“浙”等

4、记录纸和笔,制作两个数字完全相同的“车牌”。

活动过程:

一、观察了解新车

师:吴老师每天上班经过白墙的上海车市,那里有些什么车呢?我们一起去看看吧!

播放课件提问:

1、这是什么车?它是怎样的?车上有什么?它由哪几部分组成?

2、你喜欢哪辆新车?为什么?

3、你在马路上见过哪些标志的车?

4、怎样在马路上很快找到自己的新车?

二、车牌数字的排列组合

1、有很多人喜欢相同的车,买回来后在马路上开,如果有一辆车撞了人,警察叔叔怎样找到这辆车呢?

2、老师买了一辆新车,它是什么样的车?(看课件)

我的车牌有1、2、3三个数字,猜猜我的车牌号码是多少?

(1)第一次操作:幼儿两人一组,为“1”“2”“3”三个数字排顺序,看看可以排出哪些车牌号码。,将结果记录下来。

幼儿展示车牌,交流记录结果。

老师小结排列规律:123、132、231、213、312、321。,三个数字可以排6个车牌号码。

(2)第二次操作:老师在给你们一个数字大家试试用四个数字可以排出几组不同的车牌号码。幼儿两人合作共同寻找很记录四个数字的不同排列组合。

三、比较车牌

1、播放课件,观察车牌,这些车牌号码是多少?除了数字还有什么?他们各表示什么?

2、我的朋友车牌是4349,可我在马路上见到一个车牌也是4349,这是怎么回事?

老师总结:车牌由汉字、字母、数字组成,它们的排列组合不一样,才使车牌的号码不会一样。

排列组合教案 17

教学内容:

简单的排列组合

教学目标:

1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

2.培养学生有序地、全面地思考问题的意识和习惯。

教学过程:

1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。

2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。

3、出示练习二十五第3题。

学生看题后,四人小组讨论出有多少种求组合数的方法。

4、学生汇报。

(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。

(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

2.“做一做”

(1)练习二十五第7题。

通过活动的方式让学生不重不漏地把所有取钱的情况写出来。

(2)练习二十五第9题。

用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。

教学反思:

排列组合教案 18

教学目标:

1、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。

2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。

3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。使学生在数学活动中养成与人合作的良好习惯。

教学过程:

一、创设增境,激发兴趣。

师:今天我们要去"数学广角乐园"游玩,你们想去吗?

二、操作探究,学习新知。

<一>组合问题

l、看一看,说一说

师:那我们先在家里挑选穿上漂亮的衣服吧。(课件出示主题图)

师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)

2、想一想,摆一摆

(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?

①学生小组讨论交流,老师参与小组讨论。

②学生汇报

(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。(要求:小组长拿出学具衣服图片、展示板)

①学生小组合作操作摆,教师巡视参与小组活动。

②学生展示作品,介绍搭配方案。

③生生互相评价。

(3)师引导观察:

第一种方案(按上装搭配下装)有几种穿法? (4种)

第二种方案(按下装搭配上装)有几种穿法? (4种)

师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。

<二>排列问题

师:数学广角乐园到了,不过进门之前我们必须找到开门密码。(课件出示课件密码门)

密码是由1、2 、3 组成的两位数.

(1)小组讨论摆出不同的两位数,并记下结果。

(2)学生汇报交流(老师根据学生的回答,点击课件展示密码)

(3)生生相互评价。方法一:每次拿出两张数字卡片能摆出不同的两位数;

方法二:固定十位上的数字,交换个位数字得到不同的两位数;

方法三:固定个位上的数字,交换十位数字得到不同的两位数.

师小结:三种方法虽然不同,但都能正确并有序地摆出6个不同的两位数,同学们可以用自己喜欢的方法.

三、课堂实践,巩固新知。

1、乒乓球赛场次安排。

师:我们先去活动乐园看看,这儿正好有乒乓球比赛呢.(课件出示情境图)

(l)老师提出要求:每两个运动员之间打一场球赛,一共要比几场?

(2)学生独立思考.

(3)指名学生汇报.规

2、路线选择。(课件展示游玩景点图)

师:我们去公园看看吧。途中要经过游戏乐园。

(l)师引导观察:从活动乐园到游戏乐园有几条路线?哪几条?(甲,乙两条)从游戏乐园去公园有几条路线?哪几条?(A,B,C三条)(根据学生的回答课件展示)

从活动乐园到时公园到底有几种不同的走法?

(2)学生独立思索后小组交流 。

(3)全班同学互相交流 。

3、照像活动。

师:我们来到公园,这儿的景色真不错,大家照几张像吧.

师提出要求:摄影师要求三名同学站成一排照像,每小组根据每次合影人数(双人照或三人照)设计排列方案,由组长作好活动记录。

(1)小组活动,老师参与小组活动 。

(2)各小组展示记录方案 。

(3)师生共同评价 。

4、欣赏照片.

师:在同学们照像的同时,小丽一家三口人也正在照像呢,看看她们是怎样照的.(课件展示照片集欣赏)

四、总结

今天的游玩到此结束,同学们互相握手告别好吗?如果小组里的四个同学每两人握一次手,一共要握几次手?

排列组合教案 19

教学内容背景材料:

义务教育课程标准实验教科书(人教版)二年级上册第八单元的排列与组合

教学目标:

1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

2、经历探索简单事物排列与组合规律的过程。

3、培养学生有序地全面地思考问题的意识。

4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。

教学重点:

经历探索简单事物排列与组合规律的过程。

教学难点:

初步理解简单事物排列与组合的不同。

教具准备:

乒乓球、衣服图片、纸箱、每组三张数字卡片、吹塑纸数字卡片。

一、情境导入,展开教学

今天,王老师要带大家去“数学广角”里做游戏,可是,我把游戏要用的材料都放在这个密码包里。你们想解开密码取出游戏材料吗?(想)我给大家提供解码的3个信息。

1. 好,接下来老师提供解码的第一个信息:密码是一个两位数。(学生在两位数里猜)(你们猜的对不对呢?请听第二个解码信息)

2. 下面,提供解码的第二个信息:密码是由2和7组成的(学生说出27和72)。能说说看你是怎么想的吗?

3. 下面,提供解码的第三个信息:刚才说了密码可能是27也可能是72。其实这个密码和老师的年龄有关。哪个才是真正的密码是?(学生说出是27)到底是不是27呢?请看(教师出示密码)。真的是27,恭喜大家解码成功!

二、多种活动,体验新知

1、感知排列

师:请小朋友先到“数字宫”做个排数字游戏,好吗?这有两张数字卡片(1 、2)(老师从密码包里拿出),你能摆出几个两位数?(用数字卡摆一摆)

生:我摆了两个不同的数字12和21。(教师板书)

师:同学们想得真好。我又请来了一位好朋友数字3,现在有三个数字1、2、3,让大家写两位数,你们不会了吧?(会)别吹牛!(真的会)好,下面大家分组合作,组长记录。看看你们能够写出几个不同的两位数,注意不要重复,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。好,开始。

学生活动教师巡视并参与学生活动。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)哪组同学来给大家汇报一下。(教师板书结果。)有没有需要补充的呀?

2、探讨排列方法。

有的小组摆出4个不同的两位数,有的小组摆出6个不同的两位数,有什么好的方法能保证既不重复,也不漏掉数呢?还请大家分组讨论。看一看哪组同学的方法最好!(小组讨论,分组交流,学生总结方法。)哪组同学来给大家汇报一下你们的想法?

方法1:我摆出12,然后再颠倒就是21,再摆23,颠倒后就是32,再摆13,颠倒后就是31,一共可以摆出6个两位数。

方法2:我先把数字1放在十位上,然后把数字2和3分别放在个位组成12和13;我再把数字2放在十位上,然后把数字1和3分别放在个位组成21和23 ;我再把数字3放在十位上,然后把数字1和2分别放在个位上组成31和32 ,一共摆出了6个两位数。3、老师和学生共同评议方法:让学生选择自己喜欢的方法再摆一摆,学生试着总结。(如果学生说不出方法2,老师就直接告诉学生)

3、感知组合。

①师:你们真是一群善于动脑的好孩子。来,咱们握握手,祝贺祝贺!加油!123

②提出问题:从大家刚才握手,老师想出了一个数学问题:三个小朋友,每两个人只能握一次手,一共要握几次手呢?想一想!

生1:6次!

生2:4次!

师:到底是几次呢?请小组长作裁判,小组内的三个同学,试一试,到底是几次?

③学生汇报表演。小组长指挥说明。哪组同学愿意给大家表演一下?他们握手,咱们一起来数吧!教师引导学生一起数握手的次数。(注意握过小朋友一边休息)

④师问:A和B握手了吗?B和A握手了吗?这算一次还是两次呀?

⑤小结:看来,两个人相互握手,只能算一次,和顺序无关。刚才排数,交换数的位置,就变成另一个数了,这和顺序有关。

三、反馈练习,加深理解

下面大家看这是什么呀?(老师从密码包里拿出一个乒乓球)(乒乓球)这个是我昨天专门买来的。定价5角。当时我的口袋里有1张5 角的、2张2角,还有5个1角的硬币。(师出示所述人民币)大家想一想我有多少种方法付给老板钱呢?(老师引导学生有序的说出付钱的四种方法)

有了乒乓球,老师就可以教大家打乒乓球了。不过我要先考考大家。每两个人进行一场比赛,三个人要比几场?(指名答。)好的,大家真能干。下课老师就教你们的乒乓球好吗?(好)。

今天是几月几日?(12月1日)哦!快到元旦了。小明准备在数学广角举办的元旦晚会上露一手。来一个时装表演。他准备了4件衣服(教师贴出2件上衣和2件裤子),请你帮他设计一下,有几种穿法?谁来说一说?(指名答出四种穿法并演示)

大家感觉一下只有4种穿法,是不是有点少了呀?(是)小明也和大家想到一块去了。于是他又用自己的零花钱买了一条黑裤子(贴出)。大家再想一想现在一共有多少种穿法了呀?(6种)除了刚才的4种,还有哪2种,谁来说一说?(生答完后,老师再引导学生有序地回忆6种穿法)同学们真聪明。我在这里代表小明向大家说一声:谢谢了!(没关系)。对了。到时候我们一定要去看小明的精彩表演!好不好?(好)

四、游戏活动,拓展应用

1、 老师看大家学得这么开心,我们来做个抽奖游戏,想参加吗?每个小朋友都有中奖的机会哦。

①教师出示4个号球:老师这这里有四个号球:2、5、7、8。

②什么样的号码能中奖呢?我给你们透露点信息:中奖号码就是从这4个数中选出的两个数组成的两位数。猜猜,什么号码可能中奖?这个号码可能中奖。再猜?你这个号码也可能中奖。看来,可能中奖的号码有很多个。有什么好办法肯定能中奖?(把� 你写得越多你中奖的可能就越大)

③写好了吗?大家推举一个人来摸奖吧。老师来当公证员行不行?学生先摸出一个球。中奖号码的最前面一个数出来了,是2,那中奖号码可能是? 25、27、28。再摸一个球。中奖号码是?

④你中奖了吗?把你写出的这个数圈出来。同桌互相看看,如果你同位中奖了,请你给他画一面小红旗。

⑤出示所有结果:孩子们,你刚才一共写出了多少个两位数?用2、5、7、8能组成的两位数究竟有多少个呢?咱们用刚才先固定最前面一位数的办法把这些数都排出来吧!老师写,你们说,好吗?

2、老师给今天这节课表现最好的三位同学一张合影,请同学们想一想,三个人站成一行,一共有多少种不同的排法?(指名答,教师总结)

这种排法刚才有没有呀?我也糊涂了。怎样才能搞清楚呢?对了,我们也可以用刚才先固定最前面一位数的方法来排一排。(教师引导学生有顺序的排一排)这样有顺序的排一下,我们都清楚了。看来我们以后,不管在生活和学习中,做什么事情,想什么问题都要有顺序的思考,这样才能考虑全面。其实生活中有许多有趣的数学问题,不管有多难,只要大家肯动脑筋,就一定能解决。对不对?(对)

五、全课总结,升华情感

在数学广角中还有许多地方等着大家去游玩,由于时间关系,今天我们大家就玩到这里。今天你这节课最高兴的是什么事?

六、板书设计

排列组合

1 2 1 2 3 2 5 7 8

12 21 12 23 31 25 27 28

21 32 13 52 57 58

72 75 78

82 85 87

排列组合高中教案 20

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

教学重点难点

重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。

难点是解有关排列的应用题。

教学过程设计

一、复习引入

上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):

1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书。

(1)从中任取1本,有多少种取法?

(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?

2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?

找一同学谈解答并说明怎样思考的的过程

第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法。根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是:50×40=20xx.

第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区。

二、讲授新课

学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点。先从实例入手:

1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?

由学生设计好方案并回答。

(1)用加法原理设计方案。

首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票。

(2)用乘法原理设计方案。

首先确定起点站,在三个站中,任选一个站为起点站,有3种方法。即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选。那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种。

根据以上分析由学生(板演)写出所有种飞机票

再看一个实例。

在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号。如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?

找学生谈自己对这个问题的'想法。

事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数。

首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;

其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法。剩下那面旗子,放在最低位置。

根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).

根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况。(包括每个位置情况)

第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来。

由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数。

根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).

请板演的学生谈谈怎样想的?

第一步,先确定百位上的数字。在1,2,3,4这四个数字中任取一个,有4种取法。

第二步,确定十位上的数字。当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法。

第三步,确定个位上的数字。当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法。

根据乘法原理,所以共有4×3×2=24种。

下面由教师提问,学生回答下列问题

(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?

都是从一些研究的对象之中取出某些研究的对象。

(2)取出的这些研究对象又做些什么?

实质上按着顺序排成一排,交换不同的位置就是不同的情况。

(3)请大家看书,第×页、第×行。我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素。

上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法。

第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法。

第三个问题呢?

从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法。

给出排列定义

请看课本,第×页,第×行。一般地说,从n个不同的元素中,任取m(m≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

下面由教师提问,学生回答下列问题

(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?

从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同。两个条件中,只要有一个条件不符合,就是不同的排列。

如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列。

再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列。

(2)还需要搞清楚一个问题,“一个排列”是不是一个数?

生:“一个排列”不应当是一个数,而应当指一件具体的事。如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列。如果问飞机票有多少种?能表示出多少种信号。只问种数,不用把所有情况罗列出来,才是一个数。前面提到的第三个问题,实质上也是这样的

三、课堂练习

大家思考,下面的排列问题怎样解?

有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)

分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题。

解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱。

第二步从余下的三张卡片中任选符合条件的一张放在第2空箱。

第三步从余下的两张卡片中任选符合条件的一张放在第3空箱。

第四步把最后符合条件的一张放在第四空箱。具体排法,用下面图表表示:

所以,共有9种放法。

四、作业

课本:P232练习1,2,3,4,5,6,7.

排列组合的经典教案 21

教学内容:

简单的排列组合

教学目标:

1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

2.培养学生有序地、全面地思考问题的意识和习惯。

教学过程:

1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。

2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。

3、出示练习二十五第3题。

学生看题后,四人小组讨论出有多少种求组合数的方法。

4、学生汇报。

(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。

(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

2.“做一做”

(1)练习二十五第7题。

通过活动的方式让学生不重不漏地把所有取钱的情况写出来。

(2)练习二十五第9题。

用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。

教学反思: