《高中数学知识要点总结范文》
仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找到你真正的位置。无须自卑,不要自负,坚持自信接下来是小编为大家整理的高中数学知识要点总结范文,希望大家喜欢!
高中数学知识要点总结范文一
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。
高中数学知识要点总结范文二
向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
高中数学知识要点总结范文三
1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;
4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。
5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
高中数学知识要点总结范文四
等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1)a>bb
(2)a>b,b>ca>c(传递性)
(3)a>ba+c>b+c(c∈R)
(4)c>0时,a>bac>bc
c<0时,a>bac
运算性质有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
高中数学知识要点总结范文五
第一章:空间几何。三视图和直观图的绘制不算难。但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物。这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推。有必要的还要在做题时结合草图,不能单凭想象。后面的锥体柱体台体的表面积和体积,把公式记牢问题就不大。做题表求表面积时注意好到底有几个面,到底有没有上下底这类问题就可以。
第二章:点、直线、平面之间的位置关系。这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生要多看图,自己画草图的时候要严格注意好实线虚线,这是个规范性问题。关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,难度在于对这个概念无法理解,即知道有这个概念,但就是无法在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。
第三章:直线与方程。这一章主要讲斜率与直线的位置关系。只要搞清楚直线平行、垂直的斜率表示问题就不大了。需要格外注意的是当直线垂直时斜率不存在的情况,这是常考点。另外直线方程的几种形式,记得一般公式会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,记住公式,直接套用。
第四章:圆与方程。能熟练的把一般式方程转化为标准方程,通常的考试形式是等式的一遍含根号,另一边不含,这时就要注意开方后定义域或值域的限制;通过点到点的距离、点到直线的距离与圆半径的大小关系判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交直线的多种情况,这也是常考点。
高中数学知识要点总结范文相关文章:
1.高中数学学习方法:知识点总结最全版
2.高中数学重点知识结构总结
3.高二数学知识点总结
4.高中数学必考知识点归纳
5.2018高二数学会考知识点总结
6.高中数学教学工作总结范文4篇
7.高一数学重点知识点公式总结
8.高中数学知识点口诀
9.高二数学常考知识点总结
10.高中数学推理知识点总结