首页 > 教学教案 > 教案大全 > 平均数教案【优秀3篇】正文

《平均数教案【优秀3篇】》

时间:

作为一位优秀的人民教师,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。那么你有了解过教案吗?下面是整理的平均数教案【优秀3篇】,希望大家可以喜欢并分享出去。

教学目标 篇1

这节课我们首先来学习平均数.

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

  86  91  100  72  93  89  90 85  75  95

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 。

2.平均数的概念及计算公式

一般地,如果有n个数 。

那么   ①

叫做这n个数的平均数, 读作“x拨” 。

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 。学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 。教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 。

3.平均数计算公式①的应用

例1  一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温 。

让学生动手计算,以巩固平均数计算公式(一名学生板演)

教师应强调:①解题格式 。②在统计学里处理的数据包括负数 。③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 。

例2  从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

计算它们的平均质量 。(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案 。由于数据较大,计算较繁,可能会出现不同的答案 。正好为下面提出简化计算公式作好铺垫 。

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 。

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 。

讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 。

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 。

3.推导公式②

一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到

那么  ,

因此,

即  ②

为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

课堂练习:

教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 。本章将要学习的是统计学的初步知识 。

2.求n个数据的平均数的公式① 。

3.平均数的简化计算公式② 。这个公式很重要,要学会运用 。

方法小结:通过本节课我们学到了示一组数据平均数的方法 。当数据比较小时,可用公式①直接计算 。当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 。

八、布置作业

教材P153中1、2、3、4 。

九、板书设计

教学设计示例2

平均数 篇2

教学目标 :

1.算术、加权的概念,会求一组数据的算术和加权。

2.体会算术和加权的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力。

教学重点:会求一组数据的算术和加权。

教学难点 :体会在不同情境中的应用。

教学方法:引导-讨论-交流。

教学手段:多媒体

教学过程 :

创设情景,引入新课(出示篮球比赛的一些画面)

在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

活动1:前后桌四人交流。

找同学回答后,给出算术的定义。

一般地,对于n个数x1,x2,…,xn我们把

叫做这个n数的算术,简称,记为 .读作“x拔”。

活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁 16 18 21 23 24 26 29 34

相应队员数 1 2 4 1 3 1 2 1

平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)

你能说说小明这样做的道理吗?找同学回答。

巩固练习一:

1. 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童。每人捐款金额如下:(单位:元)

10,12,13.5,21,40.8,19.5,20.8,25,16,30.

这10名同学平均捐款 元。(课本P216随堂练习 1)

2.一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中 环(精确到0.1)

3.小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?

A 93分 B 95分 C 92.5分 D 94分

例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试。他们的各项测试成绩如下表所示:

测试项目 测试成绩

A B C

创新 72; 85; 67

综合知识 50; 74; 70

语言 88; 45; 67

(1)如果根据三项测试的平均成绩确定录用人选,那么誰将被录用?

(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时誰将被录用?

解:(1)A的平均成绩为 (分).

B的平均成绩为 (分).

C的平均成绩为 (分).

因此候选人A将被录用。

(2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用。

思考:(1)(2)的结果不一样说明了什么?

实际问题中,一组数据里的各个数据的“重要程度”未必相同。因此,在计算这组数据的时,往往给每个数据一个“权”。如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称

为A的三项测试成绩的加权。

巩固练习二:

1. 某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是多少?

变形训练:(小组交流)

1.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克 元;

2.某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16.5,18,18.5.如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为 .

小结:先由学生总结,教师再补充。通过本节的学习,我们掌握了:1.算术、加权的概念,会求一组数据的算术和加权。2.体会算术和加权的联系和区别,并能利用它们解决一些现实问题。

布置书面作业 :课本P216习题8.1 1、2

课外作业 :(两题任选一题)

1. 到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的。

2. 请设计一个利用“加权”方法来求的应用题,再将其“权”作适当改变,观察平均值的变化。观察“权”的变化对结果的影响。

板书设计

1.

算术:

对于n个数x1,x2,…xn我们把

叫做这个n数的算术,简称,记为 .

读作“x拔”

例1解:(1)A的平均成绩为

B的平均成绩为 .

C的平均成绩为 .

因此候选人A将被录用 (2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用。

加权:称

为A的三项测试成绩的加权。

学情分析: 篇3

在本节课内容学习之前,学生已经掌握了简单条形统计图的绘制及单个条形统计图内数据的分析、比较。可以通过观察统计图准确地比较出数量的多少及大小。例题中的情景也是学生生活中常见或类似的事情,学生分析起来也没有陌生感。